Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Tobias Van Almsick and William S. Sheldrick*

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany

Correspondence e-mail:
william.sheldrick@rub.de

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{Se}-\mathrm{As})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.099$
Data-to-parameter ratio $=26.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tetracaesium octaselenidotetraarsenate(III)

The title compound, $\mathrm{Cs}_{4} \mathrm{As}_{4} \mathrm{Se}_{8}$, contains discrete cyclic [$\left.\mathrm{As}_{4} \mathrm{Se}_{8}\right]^{4-}$ anions consisting of corner-sharing AsSe_{3} pyramids. A twist-chair conformation is observed for the eightmembered $\mathrm{As}_{4} \mathrm{Se}_{4}$ rings, which exhibit a crystallographic inversion centre. Both of the crystallographically independent Cs^{+}cations contain eight Se atoms in their coordination spheres.

Comment

In contrast with the rich structural diversity exhibited by both thioarsenates(III) and thio- and selenidoantimonates(III) (Sheldrick \& Wachhold, 1998; Sheldrick, 2000), only a very limited number of structural types are known for the corresponding oligo- and polymeric selenidoarsenates(III). These all contain AsSe_{3} pyramids as building units, which are typically connected by shared corners or $\mathrm{Se}-\mathrm{Se}$ bonds into discrete cyclic anions or infinite chains. The trans- $\left[\mathrm{As}_{2} \mathrm{Se}_{4}\right]^{2-}$ anions of $\mathrm{Ba}_{2} \mathrm{As}_{2} \mathrm{Se}_{5}$ (Cordier et al., 1985) provide the only reported example of edge-sharing. Although cyclic $\left[\mathrm{As}_{3} \mathrm{Se}_{6}\right]^{3-}$ anions comprising three corner-sharing AsSe_{3} pyramids have been structurally characterized in both $\left[\mathrm{Sr}(\mathrm{en})_{4}\right]_{2}\left[\mathrm{As}_{3} \mathrm{Se} \mathrm{S}_{6}\right] \mathrm{Cl}$ (en is ethylenediamine; Sheldrick \& Kaub, 1985a) and $\left[\mathrm{Mn}(\text { dien })_{2}\right]_{3}\left[\mathrm{As}_{3} \mathrm{Se}_{6}\right]_{2}$ (dien is diethylenetriamine; Fu, Guo, Liu et al., 2005), many more examples containing $\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]^{2-}$ have been isolated in the presence of large counter-cations. Recent structural studies of this chair-shaped dimeric anion with its two $\mathrm{Se}-\mathrm{Se}$-linked AsSe_{3} pyramids have been reported for $[\mathrm{Cs}(18 \text {-crown- } 6)]_{2}\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]$ (18-crown-6 is 1,4,7,10,13,16-hexaoxocyclododecane; van Almsick \& Sheldrick, 2005) and $\left[M(\mathrm{en})_{3}\right]\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right](M=\mathrm{Mn}$ or Fe ; Fu, Guo, Liu et al., 2005). The known polymeric selenidoarsenates(III) are restricted to the phases $A \mathrm{AsSe}_{2}[A=\mathrm{Na}$ (Eisenmann \& Schäfer, 1979) and $A=\mathrm{K}-\mathrm{Cs}$ (Sheldrick \& Häusler, 1988)] and $A \mathrm{AsSe}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}(A=\mathrm{K}$ and $x=1$, or $A=\mathrm{Rb}$ or Cs and $x=0.5$; Sheldrick \& Kaub, 1986). Whereas the [AsSe $]^{-}$chains of the former metaselenidoarsenates(III) contain corner-bridged AsSe_{3} pyramids, these building units are connected by $\mathrm{Se}-\mathrm{Se}$ bonds in the $\left[\mathrm{AsSe}_{3}\right]^{-}$chains of $A \mathrm{AsSe}_{3} x \mathrm{H}_{2} \mathrm{O}$.

The phases $A \mathrm{AsSe}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ were prepared from $A_{2} \mathrm{CO}_{3}$ and $\mathrm{As}_{2} \mathrm{Se}_{3}$ under mild hydrothermal conditions (408 K). We have now observed that the title octaselenidotetraarsenate(III), $\mathrm{Cs}_{4} \mathrm{As}_{4} \mathrm{Se}_{8}$, (I), can be isolated in low yield on heating CsAs$\mathrm{Se}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ to 463 K in methanol.

Compound (I) contains the novel crystallographically centrosymmetric $\mathrm{As}_{4} \mathrm{Se}_{8}{ }^{4-}$ anion with its eight-membered $\mathrm{As}_{4} \mathrm{Se}_{4}$ ring (Fig. 1). As observed for the analogous $\mathrm{Sb}_{4} \mathrm{~S}_{8}{ }^{4-}$ anion of $[\mathrm{Ni}(\mathrm{dien})]_{2}\left[\mathrm{Sb}_{4} \mathrm{~S}_{8}\right]$ (Bensch et al., 2001), the octaselenidotetraarsenate(III) anion exhibits a twist-chair conformation. In accordance with other chalcogenidoarsen-

Received 27 January 2006
Accepted 1 February 2006

Figure 1
The cyclic $\left[\mathrm{As}_{4} \mathrm{Se}_{8}\right]^{4-}$ anion of (I), showing the atom-labelling scheme. Displacement parameters are drawn at the 50% probability level. [Symmetry code: (iii) $1-x, 1-y, 1-z$.]

Figure 2
A projection of the structure of (I) perpendicular to [001]. Cs atoms are indicated by green dotted circles, Se atoms by open brown circles and As atoms by red semi-hatched circles
ates(III) (Sheldrick \& Wachhold, 1998), the more polar terminal As-Se distances [2.3092 (14) and 2.3223 (13) Å] are significantly shorter than the bridging As-Se bond lengths [2.4306 (13)-2.4676 (13) Å] within the eight-membered ring. Although the smaller $\left[\mathrm{As}_{3} \mathrm{Se}_{6}\right]^{3-}$ anion has been structurally characterized in two salts (Sheldrick \& Kaub, 1985b; Fu, Guo, Cai et al., 2005), the analogous $\left[\mathrm{As}_{4} \mathrm{Se}_{8}\right]^{4-}$ anion has yet to be reported.

Fig. 2 depicts a projection of the crystal structure of (I) perpendicular to [001]. $\mathrm{Cs}-\mathrm{Se}$ distances in the range 3.6352 (14)-4.1289 (18) \AA are observed for the eightfold coordinated counter-cations Cs1 and Cs2.

Experimental

CsAsSe $3 \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ ($300.0 \mathrm{mg}, 0.66 \mathrm{mmol}$) (Sheldrick \& Kaub, 1986) was heated to 463 K in methanol (0.8 ml) in a sealed glass tube. After 30 h , the contents were allowed to cool to room temperature at $2.1 \mathrm{~K} \mathrm{~h}^{-1}$ to afford red crystals of (I) in 10% yield, together with black $\mathrm{Cs}_{2} \mathrm{As}_{4} \mathrm{Se}_{6}$ (van Almsick \& Sheldrick, 2006) in 32% yield.

Crystal data

$\mathrm{Cs}_{4} \mathrm{As}_{4} \mathrm{Se}_{8}$
$M_{r}=1463.00$
Monoclinic, $P 2_{1} / n$
$a=7.1572$ (13) \AA
$b=14.862$ (3) \AA
$c=10.515$ (4) \AA
$\beta=103.51(2)^{\circ}$
$V=1087.5(5) \AA^{3}$
$Z=2$

Data collection

Siemens $P 4$ four-circle diffractometer
ω scans
Absorption correction: ψ scan (XPREP in SHELXTL; Sheldrick, 1995)
$T_{\text {min }}=0.054, T_{\text {max }}=0.092$
2600 measured reflections
1916 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.099$
$S=1.02$
1916 reflections
73 parameters

$$
D_{x}=4.468 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 24 reflections

$\theta=5.1-17.3^{\circ}$

$\mu=26.06 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Prism, red
$0.12 \times 0.11 \times 0.09 \mathrm{~mm}$

$$
1594 \text { reflections with } I>2 \sigma(I)
$$

$R_{\text {int }}=0.037$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-1 \rightarrow 8$
$k=-1 \rightarrow 17$
$l=-12 \rightarrow 12$
3 standard reflections every 97 reflections intensity decay: 0.1%

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0697 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=1.28 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-1.23 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

Cs1-Se1 ${ }^{\text {i }}$	3.6877 (13)	Cs2-Se21 ${ }^{\text {ix }}$	3.8412 (14)
Cs1-Se11 ${ }^{\text {ii }}$	3.6966 (13)	Cs2-Se1	3.8778 (14)
$\mathrm{Cs} 1-\mathrm{Se} 2^{\text {iii }}$	3.7185 (13)	Cs2-Se1 ${ }^{\text {vii }}$	3.9099 (16)
Cs1-Se1	3.7192 (16)	Cs2-Se2	4.1289 (18)
$\mathrm{Cs} 1-\mathrm{Se} 21^{\text {i }}$	3.7518 (14)	Se1-As2	2.4306 (13)
$\mathrm{Cs} 1-\mathrm{Se} 21^{\text {iv }}$	3.8114 (16)	Se1-As1	2.4676 (13)
Cs1-Se2 ${ }^{\text {v }}$	3.8516 (13)	Se21-As2	2.3223 (13)
Cs1-Se11 ${ }^{\text {v }}$	3.8949 (16)	Se2-As1	2.4372 (13)
Cs2-Se11 ${ }^{\text {vi }}$	3.6352 (14)	Se2-As2 ${ }^{\text {iii }}$	2.4403 (15)
Cs2-Se11 ${ }^{\text {vii }}$	3.6801 (14)	Se11-As1	2.3092 (14)
$\mathrm{Cs} 2-\mathrm{Se} 21{ }^{\text {viii }}$	3.7009 (16)	As2-Se2 ${ }^{\text {iii }}$	2.4403 (15)
Cs2-Se11	3.7377 (14)		
As2-Se1-As1	108.33 (5)	Se2-As1-Se1	101.59 (5)
As1-Se2-As2 ${ }^{\text {iii }}$	94.98 (5)	Se21-As2-Se1	96.01 (5)
Se11-As1-Se2	98.49 (5)	Se21-As2-Se2 ${ }^{\text {iii }}$	101.09 (5)
Se11-As1-Se1	104.95 (5)	$\mathrm{Se} 1-\mathrm{As} 2-\mathrm{Se} 2{ }^{\text {iii }}$	99.18 (5)
As ${ }^{\text {iii }}-\mathrm{Se} 2-\mathrm{As} 1-\mathrm{Se} 11$	-155.96 (5)	As2-Se1-As1-Se2	-8.79 (6)
As2 ${ }^{\text {iii }}-\mathrm{Se} 2-\mathrm{As} 1-\mathrm{Se} 1$	96.77 (5)	As1-Se1-As2-Se21	178.95 (5)
As2-Se1-As1-Se11	-110.96 (6)	As1-Se1-As2-Se2 ${ }^{\text {iii }}$	-78.76 (6)
$\begin{aligned} & \text { Symmetry codes: (i) } \quad x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2} ; \quad \text { (ii) } \quad-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2} ; \quad \text { (iii) } \\ & -x+1,-y+1,-z+1 ; \text { (iv) } x+1, y, z ; \text { (v) }-x+2,-y+1,-z+1 \text {; (vi) } x-1, y, z \text {; } \\ & \text { (vii) }-x+1,-y+1,-z \text {; (viii) }-x,-y+1,-z \text {; (ix) }-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2} \text {. } \end{aligned}$			

The highest peak in the final difference Fourier synthesis is situated $1.84 \AA$ from atom Se11 and the deepest hole $1.76 \AA$ from atom Cs1.

inorganic papers

Data collection: $R 3 m / V$ Software (Siemens, 1989); cell refinement: R3m/V Software; data reduction: XDISK (Siemens, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1995); software used to prepare material for publication: SHELXL97.

References

Almsick, T. van \& Sheldrick, W. S. (2005). Acta Cryst. E61, m2431-m2433. Almsick, T. van \& Sheldrick, W. S. (2006). Unpublished results. Bensch, W., Näther, C. \& Stähler, R. (2001). Chem. Commun. pp. 477-478. Cordier, G., Schwidetzky, C. \& Schäfer, H. (1985). Rev. Chim. Miner. 22, 93100.

Eisenmann, B. \& Schäfer, H. (1979). Z. Anorg. Allg. Chem. 456, 87-94.
Fu, M.-L., Guo, G.-C., Cai, L.-Z., Zhang, Z.-J. \& Huang, J.-S. (2005). Inorg. Chem. 44, 184-186.
Fu, M.-L., Guo, G.-C., Liu, X., Liu, B., Cai, L.-Z. \& Huang, J.-S. (2005). Inorg. Chem. Commun. 8, 18-21.
Sheldrick, G. M. (1995). SHELXTL. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, W. S. (2000). J. Chem. Soc. Dalton Trans. pp. 3041-3052.
Sheldrick, W. S. \& Häusler, H.-J. (1988). Z. Anorg. Allg. Chem. 561, 139-148.
Sheldrick, W. S. \& Kaub, J. (1985a). Z. Naturforsch. Teil B, 40, 1020-1022.
Sheldrick, W. S. \& Kaub, J. (1985b). Z. Naturforsch. Teil B, 40, 19-21.
Sheldrick, W. S. \& Kaub, J. (1986). Z. Anorg. Allg. Chem. 535, 179-185.
Sheldrick, W. S. \& Wachhold, M. (1998). Coord. Chem. Rev. 176, 211-322.
Siemens (1989). R3m/V Software (Version 3.2) and XDISK. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: © 2006 International Union of Crystallography All rights reserved

