Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tobias Van Almsick and William S. Sheldrick*

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany

Correspondence e-mail: william.sheldrick@rub.de

Key indicators

Single-crystal X-ray study T = 292 K Mean σ (Se–As) = 0.002 Å R factor = 0.037 wR factor = 0.099 Data-to-parameter ratio = 26.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography

All rights reserved

Tetracaesium octaselenidotetraarsenate(III)

The title compound, $Cs_4As_4Se_8$, contains discrete cyclic $[As_4Se_8]^{4-}$ anions consisting of corner-sharing $AsSe_3$ pyramids. A twist-chair conformation is observed for the eight-membered As_4Se_4 rings, which exhibit a crystallographic inversion centre. Both of the crystallographically independent Cs^+ cations contain eight Se atoms in their coordination spheres.

Comment

In contrast with the rich structural diversity exhibited by both thioarsenates(III) and thio- and selenidoantimonates(III) (Sheldrick & Wachhold, 1998; Sheldrick, 2000), only a very limited number of structural types are known for the corresponding oligo- and polymeric selenidoarsenates(III). These all contain AsSe₃ pyramids as building units, which are typically connected by shared corners or Se-Se bonds into discrete cyclic anions or infinite chains. The *trans*- $[As_2Se_4]^{2-1}$ anions of Ba₂As₂Se₅ (Cordier et al., 1985) provide the only reported example of edge-sharing. Although cyclic [As₃Se₆]³⁻ anions comprising three corner-sharing AsSe₃ pyramids have been structurally characterized in both [Sr(en)₄]₂[As₃Se₆]Cl (en is ethylenediamine; Sheldrick & Kaub, 1985a) and [Mn(dien)₂]₃[As₃Se₆]₂ (dien is diethylenetriamine; Fu, Guo, Liu *et al.*, 2005), many more examples containing $[As_2Se_6]^{2-1}$ have been isolated in the presence of large counter-cations. Recent structural studies of this chair-shaped dimeric anion with its two Se-Se-linked AsSe₃ pyramids have been reported for [Cs(18-crown-6)]₂[As₂Se₆] (18-crown-6 is 1,4,7,10,13,16-hexaoxocyclododecane; van Almsick & Sheldrick, 2005) and $[M(en)_3][As_2Se_6]$ (M = Mn or Fe; Fu, Guo, Liu et al., 2005). The known polymeric selenidoarsenates(III) are restricted to the phases $AAsSe_2$ [A = Na (Eisenmann & Schäfer, 1979) and A = K-Cs (Sheldrick & Häusler, 1988)] and $AAsSe_3.xH_2O$ (A = K and x = 1, or A = Rb or Cs and x = 0.5; Sheldrick & Kaub, 1986). Whereas the [AsSe₂]⁻ chains of the former metaselenidoarsenates(III) contain corner-bridged AsSe₃ pyramids, these building units are connected by Se-Se bonds in the $[AsSe_3]^-$ chains of $AAsSe_3.xH_2O$.

The phases $AAsSe_3.xH_2O$ were prepared from A_2CO_3 and As_2Se_3 under mild hydrothermal conditions (408 K). We have now observed that the title octaselenidotetraarsenate(III), $Cs_4As_4Se_8$, (I), can be isolated in low yield on heating CsAsSe_3 $\cdot 0.5H_2O$ to 463 K in methanol.

Compound (I) contains the novel crystallographically centrosymmetric $As_4Se_8^{4-}$ anion with its eight-membered As_4Se_4 ring (Fig. 1). As observed for the analogous $Sb_4S_8^{4-}$ anion of [Ni(dien)]₂[Sb₄S₈] (Bensch *et al.*, 2001), the octaselenidotetraarsenate(III) anion exhibits a twist-chair conformation. In accordance with other chalcogenidoarsen-

Received 27 January 2006 Accepted 1 February 2006

Figure 1

The cyclic $[As_4Se_8]^{4-}$ anion of (I), showing the atom-labelling scheme. Displacement parameters are drawn at the 50% probability level. [Symmetry code: (iii) 1 - x, 1 - y, 1 - z.]

Figure 2

A projection of the structure of (I) perpendicular to [001]. Cs atoms are indicated by green dotted circles, Se atoms by open brown circles and As atoms by red semi-hatched circles

ates(III) (Sheldrick & Wachhold, 1998), the more polar terminal As—Se distances [2.3092 (14) and 2.3223 (13) Å] are significantly shorter than the bridging As—Se bond lengths [2.4306 (13)–2.4676 (13) Å] within the eight-membered ring. Although the smaller $[As_3Se_6]^{3-}$ anion has been structurally characterized in two salts (Sheldrick & Kaub, 1985*b*; Fu, Guo, Cai *et al.*, 2005), the analogous $[As_4Se_8]^{4-}$ anion has yet to be reported.

Fig. 2 depicts a projection of the crystal structure of (I) perpendicular to [001]. Cs—Se distances in the range 3.6352 (14)-4.1289 (18) Å are observed for the eightfold coordinated counter-cations Cs1 and Cs2.

Experimental

 $CsAsSe_3.0.5H_2O$ (300.0 mg, 0.66 mmol) (Sheldrick & Kaub, 1986) was heated to 463 K in methanol (0.8 ml) in a sealed glass tube. After 30 h, the contents were allowed to cool to room temperature at 2.1 K h⁻¹ to afford red crystals of (I) in 10% yield, together with black $Cs_2As_4Se_6$ (van Almsick & Sheldrick, 2006) in 32% yield.

 $D_x = 4.468 \text{ Mg m}^{-3}$

Cell parameters from 24

 $0.12 \times 0.11 \times 0.09 \text{ mm}$

1594 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\theta = 5.1 - 17.3^{\circ}$ $\mu = 26.06 \text{ mm}^{-1}$

T = 292 (2) K

Prism, red

 $R_{\rm int} = 0.037$

 $\theta_{\rm max} = 25.0^{\circ}$

 $h = -1 \rightarrow 8$

 $k = -1 \rightarrow 17$

 $l = -12 \rightarrow 12$

3 standard reflections every 97 reflections

intensity decay: 0.1%

Crystal data

 $\begin{array}{l} {\rm Cs}_4{\rm As}_4{\rm Se}_8 \\ M_r = 1463.00 \\ {\rm Monoclinic}, \ P2_1/n \\ a = 7.1572 \ (13) \\ {\rm \AA} \\ b = 14.862 \ (3) \\ {\rm \AA} \\ c = 10.515 \ (4) \\ {\rm \AA} \\ \beta = 103.51 \ (2)^\circ \\ V = 1087.5 \ (5) \\ {\rm \AA}^3 \\ Z = 2 \end{array}$

Data collection

Siemens P4 four-circle diffractometer ω scans Absorption correction: ψ scan (XPREP in SHELXTL; Sheldrick, 1995) $T_{\min} = 0.054, T_{\max} = 0.092$ 2600 measured reflections 1916 independent reflections

Refinement

 Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0697P)^2]$
 $R[F^2 > 2\sigma(F^2)] = 0.037$ where $P = (F_o^2 + 2F_c^2)/3$
 $wR(F^2) = 0.099$ $(\Delta/\sigma)_{max} < 0.001$

 S = 1.02 $\Delta\rho_{max} = 1.28$ e Å⁻³

 1916 reflections
 $\Delta\rho_{min} = -1.23$ e Å⁻³

 73 parameters
 Δ

Table 1

Selected geometric parameters (Å, °).

Cs1-Se1 ⁱ	3.6877 (13)	Cs2-Se21 ^{ix}	3.8412 (14)
Cs1-Se11 ⁱⁱ	3.6966 (13)	Cs2-Se1	3.8778 (14)
Cs1-Se2 ⁱⁱⁱ	3.7185 (13)	Cs2-Se1 ^{vii}	3.9099 (16)
Cs1-Se1	3.7192 (16)	Cs2-Se2	4.1289 (18)
Cs1-Se21 ⁱ	3.7518 (14)	Se1-As2	2.4306 (13)
Cs1-Se21 ^{iv}	3.8114 (16)	Se1-As1	2.4676 (13)
Cs1-Se2 ^v	3.8516 (13)	Se21-As2	2.3223 (13)
Cs1-Se11 ^v	3.8949 (16)	Se2-As1	2.4372 (13)
Cs2-Se11 ^{vi}	3.6352 (14)	Se2-As2 ⁱⁱⁱ	2.4403 (15)
Cs2-Se11 ^{vii}	3.6801 (14)	Se11-As1	2.3092 (14)
Cs2-Se21 ^{viii}	3.7009 (16)	As2–Se2 ⁱⁱⁱ	2.4403 (15)
Cs2-Se11	3.7377 (14)		
As2-Se1-As1	108.33 (5)	Se2-As1-Se1	101.59 (5)
As1-Se2-As2 ⁱⁱⁱ	94.98 (5)	Se21-As2-Se1	96.01 (5)
Se11-As1-Se2	98.49 (5)	Se21-As2-Se2 ⁱⁱⁱ	101.09 (5)
Se11-As1-Se1	104.95 (5)	Se1-As2-Se2 ⁱⁱⁱ	99.18 (5)
As2 ⁱⁱⁱ -Se2-As1-Se11	-155.96(5)	As2-Se1-As1-Se2	-8.79(6)
As2 ⁱⁱⁱ -Se2-As1-Se1	96.77 (5)	As1-Se1-As2-Se21	178.95 (5)
As2-Se1-As1-Se11	-110.96 (6)	As1-Se1-As2-Se2 ⁱⁱⁱ	-78.76 (6)
Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii)			
-x + 1, -y + 1, -z + 1; (iv) $x + 1, y, z;$ (v) $-x + 2, -y + 1, -z + 1;$ (vi) $x - 1, y, z;$			
(vii) $-x + 1, -y + 1, -z$; (viii) $-x, -y + 1, -z$; (ix) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.			

The highest peak in the final difference Fourier synthesis is situated 1.84 Å from atom Se11 and the deepest hole 1.76 Å from atom Cs1. Data collection: *R3m/V Software* (Siemens, 1989); cell refinement: *R3m/V Software*; data reduction: *XDISK* (Siemens, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1995); software used to prepare material for publication: *SHELXL97*.

References

- Almsick, T. van & Sheldrick, W. S. (2005). Acta Cryst. E61, m2431-m2433.
- Almsick, T. van & Sheldrick, W. S. (2006). Unpublished results.
- Bensch, W., Näther, C. & Stähler, R. (2001). Chem. Commun. pp. 477-478.
- Cordier, G., Schwidetzky, C. & Schäfer, H. (1985). Rev. Chim. Miner. 22, 93-100.

Eisenmann, B. & Schäfer, H. (1979). Z. Anorg. Allg. Chem. 456, 87-94.

- Fu, M.-L., Guo, G.-C., Cai, L.-Z., Zhang, Z.-J. & Huang, J.-S. (2005). Inorg. Chem. 44, 184–186.
- Fu, M.-L., Guo, G.-C., Liu, X., Liu, B., Cai, L.-Z. & Huang, J.-S. (2005). Inorg. Chem. Commun. 8, 18–21.
- Sheldrick, G. M. (1995). SHELXTL. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, W. S. (2000). J. Chem. Soc. Dalton Trans. pp. 3041-3052.
- Sheldrick, W. S. & Häusler, H.-J. (1988). Z. Anorg. Allg. Chem. 561, 139-148.
- Sheldrick, W. S. & Kaub, J. (1985a). Z. Naturforsch. Teil B, 40, 1020–1022.
- Sheldrick, W. S. & Kaub, J. (1985b). Z. Naturforsch. Teil B, 40, 19-21.
- Sheldrick, W. S. & Kaub, J. (1986). Z. Anorg. Allg. Chem. 535, 179-185.
- Sheldrick, W. S. & Wachhold, M. (1998). Coord. Chem. Rev. 176, 211-322.
- Siemens (1989). R3m/V Software (Version 3.2) and XDISK. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.